
Package Object

PDS Management Council Technical Session
July 31, 2000

S. Joy and J. Wilf

Purpose

• The primary reason to collect files into packages is to
circumvent existing standards (PDS labeling, ISO file
naming).

• The current need is to be able to distribute software
collections on archive volumes.
– Software components do not necessarily comply with ISO file

naming conventions.
– Requiring PDS labels for each component of a large software

collection is unreasonable.

Goal
• Develop a mechanism for describing a collection of files

that have been “packaged” into a single file within a PDS
label.

• Not attempt to address the logical package issue at this
time. Address the need to be able to describe and distribute
software packages collected into a single file quickly.

• Develop a standard that does not preclude future
development work on a package object that can be
generalized to describe both physical and logical file
collections.

Requirements
• A single package file (physical) must be created by using

tar to collect multiple files into a single file.
• A PDS label must be created to describe the package file.

– The label must also be able to describe package elements that have the
same root name as the package that are present outside of the package
(executables, user’s guide, etc.) .

• The logical or unpackaged contents must be described.
– Each file in the package needs to be identified, and file attributes:

• file_name (with path included) or path_name and file_name
• interchange_format
• record_type
• file type (source, executable, object library, document, test data, etc)
• bytes
• creation_date

 should be provided.
– This attribute set is sufficient to allow the automated generation of PDS

minimum labels for each file in the package.

Why TAR?
• ZIP and other file packaging techniques typically compress

the original files making them inaccessible should the
software not be supported in the future.

• TAR is only commonly available format that provides a
packaging capability that does not modify the files within
the package.
– TAR merely concatenates files together adding header information

in front of each file.
– ASCII files remain viewable within the tar file.
– With a bit of effort, the individual files within a tar file could be

recreated using most common file editors.

• Using TAR avoids the potential problem of files not being
accessible if the software is not supported in the future.

Solution
• Use the FILE object as a class (similar to DOCUMENT)

– Explicitly point to all files with the same root name as the label and
include a FILE object for each (no implicit file object).

– Encourage use of the INTERCHAGE_FORMAT keyword by
adding it to the optional keyword set.

– Encourage use of the DESCRIPTION keyword by adding it to the
optional keyword set.

– Create “special instance” of FILE object for PACKAGE_FILE,
similar to the SERIES and SPECTRUM forms of TABLE.

• Discourage use of packaging for groups of files other than software.
• Require a “MANIFEST_TABLE” object within the object. The

manifest table specifies the attributes of each file in the package.
• Require an ENCODING_TYPE keyword.
• Encourage use of keywords SOFTWARE_NAME, PLATFORM,

SOFTWARE_VERSION_ID, TECHNICAL_SUPPORT_TYPE by
including them in the optional keyword set for the PACKAGE_FILE
object.

– Create a MANIFEST_TABLE object as a special instance of the
TABLE object.

• Require specific COLUMN objects (list provided previously)
• Allow additional column objects as needed.

Example
• In this example, there are two versions of the software that will be

included on an archive volume (Windows and Solaris). Both the
executable file and the readme file are provided both within the
software package and outside of the package file. Files are packaged
into a single tar file for each supported platform.

• The SOFTWARE directory would look like:

 +[SOFTWARE]
 |
 + SOFTINFO.TXT
 |
 +[PCWIN]
 | + READMOC.EXE
 | + READMOC.LBL
 | + READMOC.TAB
 | + READMOC.TAR
 | + READMOC.TXT
 |
 +[SOLARIS]
 | + READMOC.EXE
 | + READMOC.LBL
 | + READMOC.TAB
 | + READMOC.TAR
 | + READMOC.TXT

Example Label

PDS_VERSION_ID = 3
LABEL_REVISION_NOTE = “E. Eliason, 1999-03-17;”
^PACKAGE_FILE = “READMOC.TAR”
^PACKAGE_MANIFEST_FILE = “READMOC.TAB”
^EXECUTABLE_SOFTWARE_FILE = “READMOC.EXE”
DESCRIPTION = “READMOC is a software package provided by the MOC team to decompress

MOC images. The complete package, including source code, make files, etc. is provided as a single TAR file
(READMOC.TAR). A Microsoft Windows (NT, 95, 98) version of the executable file (READMOC.EXE) is also
provided outside of the software package for direct usage on the supported platforms.”

OBJECT = EXECUTABLE_SOFTWARE_FILE
 INTERCHANGE_FORMAT = BINARY
 RECORD_TYPE = UNDEFINED
 DESCRIPTION = “READMOC program executable to decompress MOC images.”
END_OBJECT = EXECUTABLE_SOFTWARE_FILE
OBJECT = PACKAGE_FILE
 INTERCHANGE_FORMAT = BINARY
 RECORD_TYPE = UNDEFINED
 ENCODING_TYPE = TAR
 SOFTWARE_NAME = “READMOC”
 SOFTWARE_VERSION_ID = “2.17”
 SOFTWARE_LICENCE_TYPE = “PUBLIC DOMAIN”
 TECHNICAL_SUPPORT_TYPE = “NONE”
 PLATFORM = {“WINDOWS NT”, “WINDOWS 95”, “WINDOWS 98”}
 DESCRIPTION = “Complete set of files for the READMOC software to decompress MOC images.”
 MANIFEST_TABLE = “READMOC.TAB”
END_OBJECT = PACKAGE_FILE
OBJECT = PACKAGE_MANIFEST_FILE
 RECORD_TYPE = “FIXED LENGTH”
 RECORD_BYTES = 100
 FILE_RECORDS = 15
 DESCRIPTION = “Table of contents for the READMOC software package tar file.”
 OBJECT = MANIFEST_TABLE
 END_ OBJECT = MANIFEST_TABLE
END_OBJECT = PACKAGE_MANIFEST_FILE
END

Example Manifest Table Object

OBJECT = MANIFEST_TABLE
 INTERCHANGE_FORMAT = ASCII
 ROWS = 15
 COLUMNS = 5
 ROW_BYTES = 120
 OBJECT = COLUMN
 NAME = FILE_NAME
 DATA_TYPE = CHARACTER
 START_BYTE =1
 BYTES = 64
 DESCRIPTION = “Full path and file name (POSIX standard) to the given file.”
 END_OBJECT = COLUMN
 OBJECT = COLUMN
 NAME = INTERCHANGE_FORMAT
 DATA_TYPE = CHARACTER
 START_BYTE = 66
 BYTES = 8
 DESCRIPTION = “Interchange format of the named file (ASCII or BINARY).”
 END_OBJECT = COLUMN
 OBJECT = COLUMN
 NAME = “RECORD TYPE”
 DATA_TYPE = CHARACTER
 START_BYTE = 86
 BYTES = 10
 DESCRIPTION = “Record type of the named file (typically UNDEFINED or STREAM).”
 END_OBJECT = COLUMN
 OBJECT = COLUMN
 NAME = “FILE BYTES”
 DATA_TYPE = “ASCII INTEGER”
 START_BYTE = 98
 BYTES = 8
 DESCRIPTION = “Size of the named file in bytes.”
 END_OBJECT = COLUMN
 OBJECT = COLUMN
 NAME = “CREATION DATE”
 DATA_TYPE = “CHARACTER”
 START_BYTE = 108
 BYTES = 10
 DESCRIPTION = “File creation date.”
 END_OBJECT = COLUMN
END_OBJECT = TABLE

Summary
• Multiple files can be packaged into a single file by using tar. A single

PDS label is required to describe the package. Tar is preferred because
it allows the package contents to be recovered if the tar software is not
supported in the future.

• Explicit FILE objects are used within the label to describe a package
file and its associated files.
– Files within the package can also exist outside the package as long as they

are described by a PDS label (either within the package label or by using
attached labels).

• The contents of a package are described in a manifest table. The
manifest table contains sufficient information to generate FILE objects
for each file contained in the package.

• Special instances of the FILE and TABLE objects are proposed to
describe PACKAGE_FILEs and MANIFEST_TABLEs.

• Package file support requires no inherently new objects and few
changes to the existing standards.

